Preclinical evaluation of taxane-binding peptide-modified polymeric micelles loaded with docetaxel in an orthotopic breast cancer mouse model.
نویسندگان
چکیده
We developed a novel taxane-binding peptide (TBP) modified, biodegradable polymeric micelle that overcomes limitations of drug loading and poor serum stability typically seen with particle delivery, leading to enhanced pharmacokinetics and tumor distribution of docetaxel (DTX). The use of the taxane-binding peptide to increase docetaxel loading is particularly compelling as it takes advantage of a known intracellular binding mechanism in a new way. Docetaxel is a potent chemotherapeutic with a therapeutic index often limited by the toxicity of the excipients that are necessary to enhance its solubility for intravenous delivery. Our polymeric micelle has terminal furan groups that enable facile antibody Fab conjugation by Diels-Alder chemistry for targeted delivery. Compared to the conventional ethanolic polysorbate 80 formulation (Free DTX), our nanoparticle (NP DTX) formulation exhibited a two-fold increase in exposure and tumor accumulation. Notably, the reduced toxicity of the NP DTX formulation increased the therapeutic index and allowed for higher dosing regimens, with a maximum tolerated dose (MTD) 1.6-fold higher than that of the Free DTX formulation, which is significant and similar to enhancements observed in clinical products for docetaxel and other drugs. These improved properties led to enhanced mouse survival in an orthotopic model of breast cancer; however, the targeted formulation of Fab-NP DTX did not further improve efficacy. Together, these results clearly demonstrate the benefits of the TBP-modified polymeric micelles as promising carriers for docetaxel.
منابع مشابه
Innovative use of the taxol binding peptide overcomes key challenges of stable and high drug loading in polymeric nanomicelles.
Despite widespread clinical use, delivery of taxane chemotherapeutics remains a challenge due to poor solubility and lack of selectively. Polymeric nanomicelle strategies have been pursued to overcome these issues; however current formulations are often limited by low drug loading and poor serum stability. To achieve a drug delivery system that addresses these issues, poly(D,L-lactide-co-2-meth...
متن کاملDocetaxel-Encapsulating Small-Sized Polymeric Micelles with Higher Permeability and Its Efficacy on the Orthotopic Transplantation Model of Pancreatic Ductal Adenocarcinoma
Pancreatic ductal adenocarcinoma (PDAC) elicits a dense stromal response that blocks vascular access because of pericyte coverage of vascular fenestrations. In this way, the PDAC stroma contributes to chemotherapy resistance, and the small-sized nanocarrier loaded with platinum has been adopted to address this problem which is not suitable for loading docetaxel (DTX). In the present study, we u...
متن کاملPolymeric micelles based on poly(ethylene glycol) block poly(racemic amino acids) hybrid polypeptides: conformation-facilitated drug-loading behavior and potential application as effective anticancer drug carriers
In this work, racemic hybrid polypeptides poly(ethylene glycol) (PEG)-b-poly(racemic-leucine) (PRL) copolymers with different leucine residues have been synthesized and characterized. Using docetaxel as a model molecule, the high drug-loaded spherical micelles based on PEG-PRL were prepared successfully using dialysis, with a tunable particle size from 170 nm to 250 nm obtained by changing the ...
متن کاملnab-Paclitaxel versus Docetaxel for the First-line Treatment of Metastatic Breast Cancer
Taxane-based treatment regimens are standard first-line therapies for metastatic breast cancer (MBC). The clinical benefit of solvent-based taxanes, including solvent-based paclitaxel and docetaxel, in MBC has been established in large randomized clinical trials. Docetaxel has demonstrated greater efficacy versus solvent-based paclitaxel in at least one trial, but both solvent-based paclitaxel ...
متن کاملPolymeric nanoparticle-docetaxel for the treatment of advanced solid tumors: phase I clinical trial and preclinical data from an orthotopic pancreatic cancer model
We assessed the efficacy of the polymeric nanoparticle containing docetaxel (PNP-DTX) in preclinical mouse models and determined the maximum tolerated dose (MTD) through clinical study. Subcutaneous and orthotopic mouse models were dedicated. Tumor growth delay in orthotopic model and quantification of in vivo imaging in orthotopic model were evaluated. Phase I clinical study was a single-cente...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomaterials
دوره 123 شماره
صفحات -
تاریخ انتشار 2017